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Predicting software reliability

By B. LitTTLEWOOD

Centre for Software Reliability, City University, Northampton Square,
London EC1V 0HB, U.K.

This paper surveys some aspects of the state of the art of software reliability
modelling. By far the greatest effort to date has been expended on the problem of
assessing and predicting the reliability growth which takes place as faults are found
and fixed, so the greater part of the paper addresses this problem. We begin with a
simple conceptual model of the software failure process in order to set the scene and
motivate the detailed stochastic models which follow. This conceptual model suggests
certain minimal characteristics which all growth models for software should possess.
There are now several detailed models which aim to represent software reliability
growth, but their accuracy of prediction seems to vary greatly from one application
to another. As it is not possible to decide a priori which will give the most accurate
answers for a particular context, the potential user is faced with a dilemma. There
seems to be no alternative to analysing the predictive accuracy on the data source
under examination and selecting for the current prediction that model which has
demonstrated greatest accuracy on earlier predictions for that data. Some ways in
which this selection can be effected are described in the paper. It turns out that
examination of accuracy of past predictions can be used to improve future predictions
by a simple recalibration procedure. Sometimes this technique works dramatically
well, and results are shown for some real software failure data. Finally, there is a brief
discussion of some wider issues which are not covered by a simple reliability growth
study. These include cost modelling, the evaluation of software engineering
methodologies, the relationship between testing and reliability, and the important
issues of ultra-high reliability and safety-critical systems. On the last point, a warning
note is sounded on the wisdom of building systems which depend on software having
a very high reliability; this will be very hard to achieve and even harder to
demonstrate.

1. INTRODUCGTION

Estimating and predicting software reliability is not easy. Perhaps the major difficulty is that
we are concerned primarily with design faults. The situation is very different from that tackled
by the conventional hardware reliability theory. Here, the dramatic advances-of the past
quarter century have resulted from a concentration on the random processes of physical failure.
Thus, for example, we now have a good understanding of how the reliabilities of complex
hardware systems depend upon, on the one hand, the detailed system structure, and on the
other, the reliabilities of the constituent components. The very success of this physical hardware
reliability theory, however, is now revealing the importance of design faults to the overall
reliability of complex systems. Our ability to use intelligent strategies to minimize the effects
of physical failure of components results in a higher proportion of system failures being caused
by flawed designs.

Software, on the other hand, has no significant physical manifestation. Software failures
are merely inherent design faults revealing themselves under appropriate operational
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514 B.LITTLEWOOD

circumstances. These faults will have been resident in the software since their creation in
the original design or in subsequent changes.

It seems important to recognize this non-physical nature of the software failure process before
attempting to model and predict it. It will be necessary, though, to ensure that the measures
of reliability we use for software (and for hardware designs) are compatible with those which
have traditionally been used for the physical failure process. After all, the objective is always an
understanding of the reliability of a total system, which can suffer software and hardware
design failures and physical failures.

One of the reasons why it is becoming vital to have measures of software reliability is the
increasing ubiquity of computer systems. It is now common for relatively mundane consumer
durables, such as washing machines and video recorders, to have sophisticated computer
controls involving quite extensive software. The reliability levels required of these systems are
not extremely high, but retro-fitting of modifications can be expensive because of the large
numbers of copies. ‘ '

Purchasers of software today often find that the producers attempt to avoid any responsibility
for its incorrect performance. Software warranties, even of a primitive kind, are extremely rare.
It is doubtful whether this situation can continue in an increasingly competitive market, and
the first vendors of mass-market software to stand behind a clear warranty may gain an
important market advantage. Indeed, new U.K. and European consumer protection laws may
force vendors to be responsible for users’ consequential losses from software failures. In such
circumstances it will be important to predict the frequenéy (and costs) of such events.

In this paper we shall look at some software reliability techniques in detail. These will
concern the problem of measuring and predicting software reliability growth during program
debugging. Currently this is the most highly developed area and some of these techniques are
finding their way into industrial practice (Currit ¢¢ al. 1986). Unfortunately, this is only a small
part of the problem. In the final section of the paper, therefore, we shall look at problems for
which no current solutions exist. These are generally areas of intensive research, and some
attempt will be made to indicate the timescales of likely success. In particular, we shall look
closely at the very difficult problem of software in safety-critical systems for which the reliability
requirements can be enormously demanding.

2. THE SOFTWARE RELIABILITY GROWTH PROBLEM
2.1. A conceptual model of the failure process

Table 1 shows a subset of some software failure data collected several years ago by John
Musa at Bell Labs (Musa 19%9), and since widely used by workers in software reliability
modelling. This particular program was part of a real-time command and control system for
which Musa was project manager, which ensured careful data collection. The observations are
the execution times, rounded to the nearest second, between successive failures. Although the
data were collected during test, the environment was carefully contrived to resemble as closely
as possible real operational use. Thus the failure behaviour here should be similar to that which
shall be experienced by the user. :

As failures occur, attempts are made to fix the underlying faults which they reveal. Musa
assumes that each fault is successfully removed before the program is set running again. Notice
that this is a questionable assumption in many cases; experience suggests that, not only are fixes
‘unsuccessful’, but they occasionally cause novel difficulties by inserting new faults.

[36]
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PREDICTING SOFTWARE RELIABILITY 515

TABLE 1. SOFTWARE FAILURE DATA

(Rounded execution times (seconds) between successive failure. Read left to right in rows.)

3 . 30 113 81 115

9 2 91 112 15
138 50 77 24 ° 108
88 670 120 26 114
326 b5 242 68 422
180 10 1146 600 15
36 4 0 8 227
65 176 58 457 300
97 263 452 255 197
193 6 79 816 1351
148 21 233 134 357

193 236 31 369 748
0 232 330 365 1222
543 10 16 529 379
44 129 810 290 300
529 281 160 828 1011
445 296 1755 1064 1783
860 983 707 33 868
724 2323 2930 1461 843
12 261 1800 865 1435
30 143 108 0 3110
1247 943 700 875 245
729 1897 447 386 446
122 990 948 1082 22
75 482 5509 100 10
1071 371 790 6150 3321
1045 648 5485 1160 1864
4116

A cursory inspection of the raw data shows that the reliability is improving, revealed by the
tendency for the inter-failure times to grow larger in the later stages. However, there is great
variability and some small inter-failure times are being observed quite late. The several zeroes
are rounded down fractions of a second. Musa claims that these features of the data are a
natural consequence of the stochastic nature of the failure process and not, for example, a result
of bad fixes causing almost immediate failures.

Data of this kind are acquired sequentially as testing progresses. Questions we might ask at
each stage of testing include: How reliable is the program now? How reliable will it be at some
specified future time? How soon can we expect to achieve a specified target reliability ? Before
we can answer such questions by using models of the failure process, we need to understand
qualitatively what is happening.

We shall take it that the execution of a program involves the selection of inputs from some
space I (the totality of all possible inputs), and the transformation of these inputs into outputs
(comprising in foto a space 0). It is worth noting that input spaces are typically extremely large
and in most cases a complete description will not be available.

The operational profile of the user will determine the probabilities of selection of different
inputs during execution. It is often the case that different users of a program have different
operational profiles; our remarks here will address a single such profile. :

A program fails when an input is selected which cannot be transformed into an acceptable
output. The totality of such inputs we shall call /. In practice a failure will be detected by a
comparison between the output obtained by processing a particular input, and the output
which ought to have been produced according to the specification of the program. Detection
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516 B.LITTLEWOOD

of failures is, of course, a non-trivial task, but we shall not concern ourselves with this problem
here.

We can take the conceptual model a stage further by considering the underlying faults which
reside in a program p. If we make the reasonable assumption that each failure can be said
to have been caused by one (and only one) fault, we have a partitioning of /; into subsets
corresponding to the different faults.

When we successfully remove a fault, and so change the program p into a new program ¢/,
the effect is to remove certain points of / from I;. Thus the members of the removed fault set
now map into ‘acceptable’ regions of O.

Operational use of a program may be thought of as the selection of a trajectory of points in
the space 1. Typically, many inputs will be successful, i.e. outside I, before an input is selected
which lies in Iy and so causes a failure. When the failure occurs, an attempt will be made to
correct the underlying fault and if this attempt is successful some points are eliminated from
I. Execution of the program then restarts (most probably in a region outside Iy as Iy is
typically very small), and the trajectory of successive inputs continues until the next failure,
when the fault is again corrected. The result is a sequence of programs p,, p,, p3, ..., and a
sequence of successively smaller sets Ig ;, Ip g Ig s, .... Clearly, the reliability growth is
determined by the sequence {Ig }.

In this paper we shall confine ourselves to the continuous time case. There is a sense, of
course, in which the whole problem is really a discrete time one (computer systems are discrete
devices; our conceptual model relies on the idea of discrete input cases). However, the times
between successive failures, which will be the random variables of interest, shall typically be
very much larger than the machine cycle time and the times required to process individual
inputs. Therefore a continuous time approach will be a good approximation to what is really
happening. : :

With this proviso, it seems reasonable to assume that the sets /; are encountered purely
randomly in the execution trajectory. That is, the time to next failure (and so the inter-failure
times) has, conditionally, an exponential distribution. If we let 7}, T, ... be the successive
inter-failure times, we have a complete description of the stochastic process if we know the rates
Ap Ay, e

Clearly, these rates, and in particular the successive differences representing the
improvements caused by the attempts to remove faults, will depend on the ‘sizes’ of the subsets
representing the faults in I;. There will be a tendency for the larger faults to be detected, and
so removed, earlier; this implies a law of diminishing returns for debugging. However, the
failure subset I will be encountered randomly and so will its subsets corresponding to the
faults. There is no guarantee that faults will be encountered in order of their size. In fact the
sequence of successive fault sizes is a stochastic process, and so, therefore, is the corresponding
sequence of rates corresponding to 7;, T;, .... Call these rates 4,, 4,, ....

As this model stands, we would expect that 4, > 4, > .... However, we have so far assumed
that a fix is certain to be effective, and therefore the only uncertainty concerns its magnitude.
In fact this may be unrealistic. There is evidence that fix attempts are fallible and that
sometimes a program is made less reliable as a result of an attempt to remove a fault. It might
be more realistic, therefore, merely to insist that the {4,} sequence is stochastically decreasing.

To summarize this conceptual model so far, there are two sources of uncertainty in the failure
behaviour of software which is undergoing debugging. In the first place, there is uncertainty

[ 38]
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PREDICTING SOFTWARE RELIABILITY 517

arising from the operational environment, specifically in the sequence of input cases selected for
processing by the program. Even if we knew I, we should not know when an input would next
be selected from here. This uncertainty results in the assumption of conditional exponental
distributions for the inter-failure times. Secondly, there is uncertainty arising from the
debugging operation itself. Even if we knew the partitioning of I, we should not know which
fault would be encountered next and so we should be uncertain about the magnitude of the
change in the failure rate. This results in the sequence of rates (parameters of the exponential
distributions of the 75s) being a stochastic process; that is, we have a doubly stochastic
scheme.
2.2. Some software reliability growth models

The conceptual model described above is, in some ways, too naive; it could be seriously
misleading for the kind of real-time process control employed in many safety-critical
applications. However, even this simple doubly stochastic scheme is not followed in all the
models which are found in the literature.

Probably the best known model is one of the earliest. The Jelinski-Moranda (J.-M.) model
(Jelinski & Moranda 1972), particularly in its extended form as the Musa model (Musa 1975),
is also still one of the most widely used. This model assumes that debugging begins when a
program contains N faults, and that each fault contributes the same amount, @, to the overall
rate of occurrence of failures. Thus, as the fixes which are carried out at failures are assumed
to be perfect, the random variables 7;, 7;, ... are independently and exponentially distributed
with parameters N@, (N—1)¢, ... successively.

There are two related criticisms of this model. It treats the sequence of rates as purely
deterministic and, more importantly, assumes all faults to have equal size. There is plenty of
empirical evidence to the contrary, that faults vary dramatically in their contributions to
program unreliability (Nagel & Skrivan 1981; Adams 1984). The reliability predictions
obtained from the model are optimistic as a result of this assumption (Littlewood et al.
1983).

The Littlewood model (Littlewood 1981) overcomes this difficulty by treating the rates
corresponding to the different faults as independent gamma (a, £) random variables. In this
model there is a tendency for the larger rate faults to be encountered earlier than the smaller
ones, but this sequence is itself random. The model therefore represents the diminishing returns
in improved reliability which come from additional testing.

Each of these models is an example of a general class of exponential-order statistic models
(Miller 19864). The faults can be seen as ‘competing risks’. The times to encounter the
different faults are independent, identically distributed random variables (exponential for
J.—M., Pareto for Littlewood), and the successive inter-failure times seen by the user are the
spacings between the order statistics.

A simple early model which captures the doubly stochastic nature of the conceptual model
of the failure process is due to Littlewood & Verrall (1973). Here, the usual assumption is made
that the inter-failure times, 7;, are conditionally independent exponentials with rates 4,, and
the A4, are assumed to be gamma (a, ¥ (¢)). Here, {({) is a parametric function which
determines the reliability growth (or decay). If (i) is an increasing function of , it is easy to
show that {4} is stochastically decreasing and { 7;} stochastically increasing. Here we shall use
¥ (i) = p,+if,. Notice that the sign of £, then determines whether there is growth or decay in
reliability ; the data themselves determine whether or not the reliability is increasing.

[39]
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518 B.LITTLEWOOD

Non-homogeneous Poisson processes (NHPPs) are obvious candidates for modelling the non-
stationary behaviour revealed by data like that in table 1. A minor conceptual drawback is that
most such processes have rate functions which change continuously in time; it could be argued
that in our case the only changes which take place are the jumps which occur at a fix. However,
one way of constructing an NHPP is to assume that N (the total number of initial faults) is Poisson
distributed in the exponential-order statistic models such as J.—M. and Littlewood (Miller
1986 4). Thus the Goel-Okumoto model (Goel & Okumoto 1979) is such an NHPP variant of
J.—M. Itis easy to show that, on the basis of a single realization, it is not possible to distinguish
between such an exponential-order statistic model and its NHPP variant.

Numerous other rate functions have been proposed for NHPP models, including the Duane
model (Duane 1964 ; Crow 1977) which was originally devised for kardware reliability growth
arising from burn-in testing (the elimination of faulty components in complex systems through
their early failure).

These are only a few of the models which have been proposed over the years. Although it
is possible to argue that some of these are less plausible than others, we are clearly not in a
position to select a definitively ‘best’ one. As we shall show next, the answers obtained from
different models on the same data set can differ dramatically. It turns out, also, that the
accuracy of models varies from one data-set to another (Abdel-Ghaly et al. 1986; Littlewood
1988). All this suggests that we need a mechanism for selecting among the alternative models
for each data-set.

2.3. Example of use

The questions we wish to ask about software reliability generally involve prediction. Even the
simplest question we can ask, concerning the current reliability at a particular stage of
debugging, relates to the time-to-next failure random variable and so is a prediction. Users of
the models are concerned with obtaining predictions which are sufficiently accurate for their
purposes. Selection between the many available models should therefore use predictive
accuracy as the primary criterion.

For simplicity, in this section we shall consider only the prediction of the time-to-next failure,
i.e. estimation of the current reliability of the program under test. Thus we want to estimate
E(t) = P(T; < t), based on the data ¢, ¢,, ..., {,—1 previously observed. Clearly, this involves
an intermediate step of statistical inference on the unknown parameters, e.g. (N, ¢) in J.-M.
This could involve maximum likelihood estimation of parameters or, more plausibly, a
bayesian analysis culminating in bayesian predictive distributions (Aitchison & Dunsmore
1975). The former approach is used here.

Figure 1 summarizes this kind of prediction for various models operating on the data of
table 1. Here are shown the medians of the times to next failure estimated by the models on
the evidence of the inter-failure times so far observed. This is the kind of repeatedly updated
calculation which would be carried out if a user were interested in stopping testing and
debugging as soon as a prespecified target reliability had been achieved. Of course the models
can present the predictions in other ways (examples are the rate of occurrence of failures and
the reliability function). Medians are shown here only for simplicity. Similarly, the models are
able (with varying degrees of difficulty) to make longer-term predictions.

At first, the results shown in figure 1 seem disappointing. While the models agree that
reliability growth is present, they disagree about the nature and extent of that growth. In
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FiGure 1. One-step-ahead median predictions from the J.—M., Lnupp (Littlewood non-homogenous
Poisson process), and L.-V. (Littlewood—Verral) models, using the data of table 1.

particular, some models give a much more optimistic picture in the later stages of debugging
than others. It is also notable that some predictions are more ‘noisy’ than others; these
fluctuations might suggest that there are local set-backs occurring in the overall growth in
reliability.

A user might reasonably ask which, if any, of these models can be trusted. Unfortunately,
this kind of disagreement is typical. Worse, there is evidence (Abdel-Ghaly et al. 1986;
Littlewood 1988) that the accuracy of the models varies from one data source to another. It
is not possible to select a ‘universally best’ model by comparing performances on many data
sets. A user is therefore faced with the problem of deciding which, if any, of the reliability
predictions he can trust for this particular data source.

Techniques are now available to detect different kinds of disagreement between predicted
and actual failure behaviour, and so assist the user to make a decision. Details are available
elsewhere (Abdel-Ghaly et al. 1986); here, we shall merely show how a consistent ‘bias’ in a
predictor can be detected and, to a large extent, eliminated.

For simplicity we shall continue to study only the problem of predicting the random variable
T,, having observed ¢,¢,, ...,,—1. We want a good estimate of F(t) =P(T;<t) or,
equivalently, of the reliability function R,(f) = 1 —F(¢). From a particular model we obtain an
estimate £(f). The user is interested in the closeness of () to the unknown true E(f). The
difficulty is that we never, even after the event, know the true F(t); the most we see is a single
realization ¢, of a random variable with distribution F(¢).

[41]
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However, as the user will be making a sequence of predictions {F(¢)} as debugging proceeds,
he will gain information about the accuracy of the model on this data source from the pairs
{£(t), t}). An informal examination will sometimes be sufficient to detect when the sequence
{t} does not look like a realization from the sequence {£()}, i.e. that the model is giving
inaccurate answers. Slightly more formally, consider the sequence of transformations
u, = E(t,); each u, is a probability integral transform of the observed ¢ using the previously
calculated prediction, £. It is easy to see that the us should ‘look like’ a random sample
from the uniform distribution U(0, 1) since we have a prequential forecasting system in the
spirit of Dawid (1984). One procedure, then, is to examine the sample cumulative distribution
function (cpF) of the sequence of us.

Two such u-plots, for the J.—M. and Littlewood—Verrall (L.—V.) models, each making 100
predictions using the data source of table 1, are shown in figure 2. It can be seen that L.-V.
is closer to the uniform line of unit slope. The Kolmogorov distances are 0.190 (J.-M.),
significant at the 19, level, and 0.144 (L.-V.), significant at the 5%, level. More important
than this, however, is what the plots tell us about the detailed nature of the prediction errors.
The plot for J.—M. is everywhere above the line of unit slope, indicating that there are too many
small « values. That is, the model is tending to underestimate the probability of failure before
¢, (the later observed failure time) ; the model is too optimistic. Conversely, there is evidence
that L.—V. is too pessimistic in its predictions. A user might reasonably conclude that the truth
lies somewhere between L.—V. and J.-M. predictions. Thus, for example, in figure 1 we might
expect the Littlewood NHPP (LNHPP) predictions to be better than L.—V. and J.-M. In fact a
u-plot of these predictions is close to uniform (the Kolmogorov distance, 0.098, is not
significant).
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FiGure 2. u-plots for the predictions of next inter-failure time from the J.—M. and L.—-V. models,
using the data from table 1.

A comparison of the performance of ten software reliability models on this data, using z-plots
and other criteria (Abdel-Ghaly et al. 1986), shows that in fact the LNHPP is giving the best
results overall. In the absence of any other information, a user might conclude that, for future
predictions on the same data source, this would be the preferred choice.

[ 42 ]
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2.4. Recalibration

The ability of the u-plot to give some indication of the nature of the deviation between
predicted and actual failure behaviour (‘pessimism’, ‘optimism’) suggests that it might be
possible to improve the raw predictions emanating from a model. Formally, there must exist
functions G, such that F(¢) = G,[F(¢)]. If the relation between predicted and actual behaviour
is approximately stationary, i.e. G, is approximately independent of z, it may be estimated from
past predictions. In fact the joined-up u-plot (Keiller & Littlewood 1984), or some suitably
smoothed version of this (Chan et al. 1985), will serve as such an estimate.

In order to recalibrate the raw prediction, F(1), at stage i, based on t,, ¢, ..., t_,, the
procedure is as follows.

1. Check that the relationship between {£(#)} and {F(t)} is approximately stationary (see,
for example, Littlewood 1988 for a simple procedure).

2. Find the u-plot for predictions made before stage i, i.e. based on subsets of ¢, t,, ..., t,_,.
Join up the vertices and then, if necessary, smooth the resulting polygon (Chan et al. 1985).
Call the resulting function G}.

3. Calculate the raw prediction, £(t).

4. Recalibrate to obtain F*(t) = G*[£(1)].

This procedure is repeated at each stage i. Notice the sequence {F¥(f)} comprises genuine
predictions; each F¥ is obtained using only information observed earlier. Thus we can examine
their accuracy using exactly the same procedures as adopted for {F(f)}. For example, for the
data of table 1, the Kolmogorov distances of the #*-plots are (J.—M.) 0.104 and (L.-V.) 0.084,
compared with 0.190 and 0.144 respectively. (Note that these are based on 80 predictions, not
the 100 in the earlier results, because the first recalibration is based on the first 20 raw
predictions). This improvement is shown clearly in the medians in figure 3; J.-M.* is less
optimistic than the originally too optimistic J.—M., L.—V.* is less pessimistic than the two
pessimistic L.-V.

Recent simulation results show that recalibration works well in surprisingly wide
circumstances (Brocklehurst 1987). For example, even when there is evidence of non-
stationarity in the relationship between predicted and actual behaviour. Occasionally the
results are dramatic. Figure 4 shows orders-of-magnitude disagreement between raw
predictions, and all 10 models applied to this data gave very poor results; recalibration brings
models into much closer agreement.

2.5. Summary

The results here and elsewhere (Abdel-Ghaly et al. 1986; Littlewood 1988) show that it is
possible to investigate the accuracy of the predictions of software reliability growth emanating
from several models on a single data source. Of course, there is no guarantee that a model
which has given accurate predictions in the past for a particular data source will necessarily do
so in the future. In the case of software it is particularly important to ensure that the conditions
of use remain the same for the period of data collection and the period for which predictions
are to be made. This can be difficult when it is desired to predict user-perceived reliability on
the basis of vendor test data. It is necessary to create a testing régime which accurately
represents the operational use of the program; see Currit ¢t al. (1986) for a successful
application in an industrial context.
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FiGure 3. Effect of adaptive procedure on the J.—M. and L.-V. predictions for the data of table 1.
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With these caveats, it does seem that it is possible in most cases to obtain reasonably accurate
reliability predictions for software and, more importantly, have confidence in their accuracy
even though no single model can be universally trusted.

The simple recalibration technique described here generally works well. Its performance
does not have to be taken on trust, however; because it forms a genuine prequential forecasting
system when it operates on a raw model, all the usual analytic techniques are available for
examining predictive accuracy.

Having said this, it has to be admitted that the reliability growth described here forms only
a small aspect of the reliability problem facing software engineering. In the next section we
shall look at other aspects of the problem. This is an active research area and it is likely that
the next few years will see important advances as a result of the several coordinated information
technology research programmes (e.g. Alvey in the UK. and the European Strategic
Programme for Research in Information Technology). There may remain, though, intractable
problems in some particularly important areas.

3. WIDER ASPECTS OF SOFTWARE RELIABILITY

The problem of measuring and predicting reliability cannot really be separated from the
methodology for the attaining of reliability. The latter can range from the very important
management issues associated with software development to problems of testing methodology,
verification, fault-tolerant architectures and metrication of the process. Neither should the
emphasis in this paper on software issues allow us to forget that the software will always be
merely a part of an overall system; it is the performance of this system which matters to the
user. Wider issues like these cannot be discussed here for reasons of brevity. In what follows we
shall consider a few software reliability problems selected for their interest and potential
importance.

3.1. Cost models _

Reliability models almost invariably only consider the failure events, and do not treat the
consequences of failure. Users, on the other hand, usually have in mind the fact that failures
are going to cost something. Recent consumer-protection legislation may make vendors liable
for the consequential losses suffered by users. If this occurs, it will be necessary to be able to
predict the cost process in order to have a rational pricing policy and possibly to fix insurance
premiums. Such problems are already encountered in simpler form by vendors who need to
estimate the costs of field maintenance of software. Cost models do not seem to be intrinsically
difficult extensions of some reliability models, and this is an active research area. However,
there do seem to be difficulties in obtaining data on the costs themselves. This is an darea where
industry could usefully ease the constraints of commercial confidentiality and share some
information (for example, by means of the U.K. Alvey Software Data Library).

3.2. Software testing

It has been indicated earlier that it is difficult to construct testing régimes which emulate
operational environments, and so allow estimates to be made of user-perceived reliability. It
is also often argued that such testing is inefficient as a means of removing bugs and hence
achieving reliability. More conventional test strategies, it is claimed, allow the tester to use
knowledge about the likely types of faults present in order to remove them more efficiently.
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Such techniques do not, however, produce data which allow the reliability of the program
under test to be evaluated.

There is thus an apparent conflict between testing seen as a means of achieving reliability,
and testing seen as a means of evaluation. We need to reconcile these conflicting aims by
developing new testing strategies.

- 3.3. Evaluation of development process and techniques

The cost-effective delivery of reliability is an important criterion against which competing
software development methodologies can be judged. The goal would be the provision of means
whereby project managers could make informed decisions about the best techniques to be used
in particular contexts.

Consider, for example, fault tolerance and testing. Under what circumstances is it best to
spend heavily on the testing of a single version of a program? There is evidence that in some
cases it may be more cost-effective to build a fault-tolerant system, but we are currently not in
a position to resolve this choice by taking into account particular circumstances.

Proportional hazard modelling (Kalbfleisch & Prentice 1980) has been suggested as a
method of identifying the relative importance of factors which influence ultimate product
reliability. The difficulty is that the experimental unit here will be a complete development of
a program, with a history of reliability growth such as described in §2 as well as explanatory
variables related to process and product. Any analysis would require many such experimental
units. Once again, the availability of suitable data has been a stumbling block to all except the
most naive investigation along these lines.

3.4. Safety-critical systems

An important problem here is the achievement and assurance of very high reliability. For
example, it has been stated (Rouquet & Traverse 1986) that the fly-by-wire computer system
for the Airbus A320 has a reliability requirement of a failure rate of 107 h™1, as loss of function
cannot be tolerated.

Clearly, the reliability growth techniques of §2 are useless in the face of such ultra-high
reliability requirements. It is easy to see that, even in the unlikely event that the system had
achieved such a reliability, we could not assure ourselves of that achievement in an acceptable
time. Mathematical verification techniques may eventually become available for these large
control programs, but they cannot address the problem of faults in the specification. To know
that the program is formally ‘correct’ is to know that it correctly implements a formal
specification, not that this specification accurately represents requirements (e.g. for safety).
Users of these systems (and their nature is often such that we are all ‘users’) rightly expect an
assurance that they shall fail acceptably infrequently.

Design diversity for fault tolerance has been advocated as a means of achieving high
reliabilities cost-effectively. Several systems have been built using such techniques (including
that of the Airbus A320 (Rouquet & Traverse 1986)). Unfortunately, there is evidence that
independently developed software versions will not fail independently, and so will not deliver
the dramatic increases in reliability over single versions which a naive assumption of
independence would suggest. Knight & Leveson (1986), for example, report an experiment in
which 27 versions were developed independently but contained a high incidence of common
faults. Eckhardt & Lee (1985) give a theoretical scenario, based on the notion of varying
‘difficulty’ of different inputs, which supports these empirical findings.
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These problems make it unlikely that in the foreseeable future we shall be able to use design
diversity to achieve ultra-high reliability. More importantly, they render the assurance
problem essentially impossible. Even in the unlikely event of our having successfully built a
system with such an extremely high reliability, we would never be able to assure ourselves or
others of this success. We cannot appeal to simple hardware-like theories of redundancy with
independent failures, but must try to estimate the dependence between versions. This has been
shown to be as difficult as the problem of simply testing the complete fault-tolerant system as
a black box (Miller 19865), and so is essentially impossible.

This discussion is not meant to imply that these techniques will not be found to be useful.
Both formal verification and fault-tolerance methods are likely to become important tools for
software engineers. They are clearly not, at this stage, a solution to the problem of both
achieving and assuring ultra-high reliability.

It is surprising to find that systems are being built whose safe functioning relies upon
software having these unassurable reliability requirements.

4. CONCLUSION

There is a great need to measure software reliability in a wide range of contexts. Our ability
to satisfy this need, however, varies greatly. On the positive side, it is now possible in many cases
to obtain accurate reliability estimates from appropriate debugging data. Furthermore, it is
usually also possible in such cases to actually analyse the accuracy of the estimates and
predictions, so that there is no need to appeal to previous experience of a ‘good’ model.

There are, however, rather stringent requirements on the testing environment for these
techniques to be successful. Most importantly, it should accurately resemble the actual use
environment if we wish to predict user-perceived reliability. Also, these techniques are practical
only for relatively modest reliability levels; for ultra-high reliability it would be necessary to
observe the system’s failure behaviour for several orders-of-magnitude longer than likely system
lifetimes. -

There are several areas of active research in software reliability. The most promising are
concerned with cost models; characterization of the user’s operational environments so that
reliability can be matched a priori to type of use; relationship between reliability measurement
and conventional testing strategies. Surprisingly, in view of the great attention it has attracted,
the problem of using properties of the product and its development process to improve
reliability prediction seems more problematical. Even ‘complexity’, which many agree
militates against reliability, is not at present captured in a measure which has found universal
acceptance ; much less do we understand its effect on a product’s failure behaviour.

The problem of ultra-high reliability remains doubly intractable; there exist neither proven
methods of achieving it nor methods of measuring it in a particular context. Like difficult
problems in mathematics, however, it inspires interesting new results (formal verification
and fault-tolerant techniques are two). But these should be seen at present as potentially cost-
effective ways of achieving relatively mundane reliability levels. Until we can assure ultra-high
software reliability, perhaps we ought to curb the dependence of safety-critical systems on the
failure-free operation of computer programs.

It is appropriate to end with a plea for better and more plentiful data sources to further
knowledge in this area. This remains a difficulty for several reasons. Most companies are
reluctant to share data for reasons of commercial confidentiality; it is often felt that reliability
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data reflects upon the quality of company products and so is particularly sensitive. From a
statistical viewpoint, the experimental unit here is a single program and its development
history. Each observation is thus extremely expensive and replication has so far been rare. One
solution is to study relatively small and unrealistic programs in an academic context. A more
promising avenue might be international cooperation on a more true-to-life experimental
programme. This would extend and enhance the experimental work which is now almost
exclusively confined to the United States.

This work was supported partly by a grant from NASA Langley Research Center, U.S.A.
and partly by a grant from the Alvey Directorate and SERC, U.K.
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Discussion

A.J. MayNe (Milton Keynes, U.K.). 1 am glad that Professor Littlewood emphasized the
importance of the human factor in software reliability. In practice, what is under test is not
an isolated software system, but a software system plus a human-software interface. This
interface includes software documentation and perceptions and misperceptions of the software.

Another way in which the human factor may affect software reliability is through patterns
of input of specific parameter values by particular types of users. For example, software that
has been substantially ‘debugged’ may have errors that are activated by only a small subset
of input-parameter combinations. Then it is possible for the software to run smoothly for a long
time after its presumed debugging, just because its users so far had not inputted any of its
critical parameter combinations.

A third way in which the human factor should be taken into account is when a programmer’s
attempt to correct a software error introduces further errors. As far as I know, few if any
software reliability models have taken much account of this effect.

Another area connected with software reliability is the corruption of files stored on magnetic
discs and other media. File corruption of this sort can on occasion give rise to faults which are
then falsely attributed to software unreliability. This situation can occur in at least two ways.
Occasionally, files can be corrupted or made ‘inaccessible’ as a result of obscure hardware
faults. More commonly, in situations where the same data file may be accessed by several.
different programs, an error in one of these programs sometimes corrupts the file in such a way
that the other programs cannot retrieve or process their data properly.

B. LitrtLEwoop. Mr Mayne is quite right to point out that it can be very misleading to talk of
the reliability of a program when that program may be executed in many different operational
environments. In fact, all our probability statements should specify which operational
environment (or mode of use) applies.

The problem of characterizing operational environments (essentially measuring their
‘stressfulness’) is an interesting one which invites study. Ideally, we would like to test a
program in one environment and be able to predict its reliability in a totally different new
environment. Intuitively, it seems this may be possible; the difficulty is the one of combining
the failure data from test with appropriate measures of the characteristics of the novel
environment.
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